High-Efficiency Step-Up Converter Robs Parallel Port

Circuit including a step-up switching converter steals power from a parallel port, providing 5 V at 8 mA with efficiency as high as 94%.

The circuit of Figure 1 steals energy from a parallel port or from any limited-energy source. Such power-conversion applications usually require very high efficiency for making use of the energy available. A parallel-data port, for instance, provides as much as 2.6 mA per data line at 2.4 V . When the eight data lines are software-configured to FFHEX (all high), that condition yields an input power of 50 mW . The system can then use the four bidirectional control-port lines and the five status-port inputs as an alternative means of communication through the PC's parallel port.

Figure 1.This circuit robs about 40mW (8mA at 5V) from an 8-bit data port whenever you program all bits high.

As shown in Figure 1, one Schottky diode per data line protects against possible errors. (Without diodes, the lines would short each other unless all were in the same state.) BAT54C devices contain two diodes per package, but exhibit a forward voltage drop of 0.3 V . As an alternative, RB411D or ZHCS500 devices drop only 170 mV but contain only one diode per SOT23 package.

An input voltage (logic high) of 2.4 V leaves only about 2 V for supplying the step-up circuit, and most such circuits (operating under low input voltage and low power) offer efficiencies no greater than 85%. IC1, however, by shunting the free-wheeling output diode with a synchronous p channel MOSFET, provides an efficiency as high as 89% for the conditions of 2 V input, 5 V output, and 10 mA output current. To gain a few more efficiency points, make a careful selection of the passive components.

The power inductor has a saturation current much higher than the operational current, so its ferrite loss is negligible. A good choice is the $15 \mu \mathrm{H}$ RCR110D (Sumida), which adds a low series resistance of $36 \mathrm{~m} \Omega$ maximum to a saturation current greater than 2.88A. Then, you can reduce loss in the input and output capacitors (C1 and C4) by selecting very low-ESR devices. Values of $470 \mu \mathrm{~F}$ give them a comfortable reservoir capacity, and you can minimize the ESR by
oversizing their voltage ratings. The $470 \mu \mathrm{H}$ ZLH by Rubycon, for example (despite being an affordable aluminium electrolytic), shows an ESR better than $45 \mathrm{~m} \Omega$ when rated at 25 V .

For supplementary protection, the 22Ω resistor R4 limits input current to 100 mA during startup. Note that R4 is shunted by Q1 as soon as enough voltage is detected by the $100 \mathrm{~K} / 100 \mathrm{~K}$ divider (R2/R3). Even in an SC70 package, Q1 reduces the loss after startup to only $90 \mu \mathrm{~W}$. A $220 \mathrm{k} \Omega$ gate resistor (R1) allows decent reaction times for an added loss of only $26 \mu \mathrm{~W}$.

Adding two $2.2 \mu \mathrm{~F}$ capacitors (C2 and C3) near the MAX1796 eliminates high-frequency spikes, and X5R dielectric material allows 10V-rated devices to fit in an 0805 (TDK) package. All these measures add crucial points of efficiency, as shown in Figure 2.

Figure 2. The efficiency of the Figure 1 circuit is highest when you remove the Schottky diodes (upper curve), and lowest for 0.3V (BAT54C) Schottkies. The middle curve is for 170 mV (RB411D) Schottkies.

For the worst-case input voltage of 2.1 V and without diodes, the efficiency of this circuit is about
92%. At 3.3 V the efficiency reaches 94.4%, which is unusual for a low-power application such as this one. Using BAT54C protection diodes drops the efficiency to 80% at 2.4 V , providing a typical output power of 40 mW . If this is insufficient, you can increase the available power to 42.75 mW by substituting the lower-voltage (RB411D) diodes.

A similar version of this article appeared in the December 9, 2004 issue of Electronic Design magazine.

More Information

MAX1796: QuickView -- Full (PDF) Data Sheet -- Free Samples

